CHAPTER SUMMARY

CHAPTER 8 BIOMOLECULES: THE CHEMICALS OF LIFE

Summary

- Biomolecules are chemicals that are made by living things.
- The elements that make up about 96% of the mass of living matter are carbon, oxygen, hydrogen, nitrogen, phosphorus and sulfur.
- The elements that are present as dissolved salts are sodium, chlorine, potassium, magnesium and calcium.
- Trace elements are those elements that are only required by living things in tiny amounts, e.g. iron, copper, zinc and iodine.
- The biomolecules found in food are:
 - Carbohydrates
 - Lipids (fats and oils)
 - Proteins
 - Nucleic acids.

Carbohydrates

- The elements found in carbohydrates are carbon, hydrogen and oxygen, in the ratio C_v(H₂O)_v.
- There are three types of carbohydrates:
 - Monosaccharides are composed of a single sugar unit (e.g. glucose, fructose, ribose). Monosaccharides are the basic unit of carboyhdrates.
 - Disaccharides are composed of two sugar units joined together (e.g. maltose, sucrose, lactose).
 - Polysaccharides are composed of many sugar units (e.g. starch, glycogen, cellulose).
- Metabolic roles:
 - Glucose is used in respiration (catabolic).
 - Glucose is made in photosynthesis (anabolic).

Lipids

- The elements found in lipids are: carbon, hydrogen and oxygen.
- Fats are lipids that are solid at room temperature.
- Oils are lipids that are liquid at room temperature.
- A triglyceride is made up of one molecule of glycerol and three attached molecules of fatty acids. Triglycerides are the basic unit of lipids.
- A phospholipid is made up of one molecule of glycerol, two attached molecules of fatty acids and a phosphate group.

Metabolic roles:

- Lipids can be used in respiration to release energy (catabolic).
- Steroids, such as cholesterol, are used to make hormones.

Proteins

- The elements found in proteins are: carbon, hydrogen, oxygen, nitrogen and sometimes sulfur or phosphorus.
- Amino acids are the basic unit of proteins.
- There are 20 common amino acids in the formation of proteins.
- A peptide is a short chain of amino acids (up to 50 amino acids).
- A polypeptide consists of a long chain of amino acids bonded together (more than 50 amino acids).
- A protein forms when over 200 amino acids are joined in a chain. When proteins form, they fold into complex three-dimensional shapes.
- Fibrous proteins show very little folding, e.g. keratin, myosin.
- Globular proteins show a lot of folding, e.g. haemoglobin, enzymes.
- Metabolic roles:
 - Enzymes control reactions.
 - Hormones regulate processes.
 - Proteins are essential to the structure and functions of membranes.
 - Antibodies fight infection.

Minerals

- Minerals are inorganic nutrients that plants and animals require in small amounts.
- Minerals include calcium, phosphorus, sulfur, potassium, chlorine, sodium, magnesium, iron, fluorine and iodine.
- Minerals are needed for:
 - Controlling pH
 - Controlling enzyme systems
 - Transmission of nerve impulses
 - Muscle contraction
 - Forming structures like bones and teeth.

CHAPTER SUMMARY

CHAPTER 8 BIOMOLECULES: THE CHEMICALS OF LIFE

Vitamins

- Vitamins are complex biomolecules that are not made in the body but are needed in tiny amounts.
- There are 13 vitamins required in our diet. They can be subdivided into two categories:
 - Water-soluble: vitamins B and C. Vitamin C is necessary for the formation of collagen, growth and maintenance of bone and teeth, helping wounds to heal and immune function.
 - Fat-soluble: vitamins A, D, E and K. Vitamin D helps absorb calcium for healthy bone and tooth formation.
- Deficiency:
 - A lack of vitamin C causes scurvy.
 - A lack of vitamin D causes rickets.

Water

- Water makes up about 60% of the mass of the human body.
 - Main component of cytoplasm and body fluids
 - Good solvent
 - Maintains neutral pH
 - Participates in chemical reactions
 - Moves easily through membranes
 - Helps to regulate temperature.

To investigate qualitatively the presence of starch in a range of food samples

- 1. Add iodine solution to a range of food samples.
- 2. If the colour remains red-yellow, then starch is not present.
- 3. If the colour turns blue-black, then starch is present.

To investigate qualitatively the presence of reducing sugar in a range of food samples

- 1. Add Benedict's (or Fehling's) qualitative solution to a range of food samples.
- 2. Place in a very hot water bath.
- 3. If the colour remains blue, then reducing sugar is not present.
- 4. If the colour turns brick-red, then reducing sugar is present.

To investigate qualitatively the presence of protein in a range of food samples

- 1. Add Biuret reagent to a range of food samples.
- 2. If the colour remains blue, then protein is not present.
- 3. If the colour turns purple-violet, then protein is present.

To investigate qualitatively the presence of lipids in a range of food samples

- 1. Rub the food samples on a piece of brown paper.
- 2. Leave to dry.
- 3. If a permanent stain (or translucent spot) remains, then lipid is present.
- 4. If a permanent stain does not remain, then lipid is not present.

To investigate quantitatively the level of reducing sugars in a range of food samples

- 1. Add Benedict's (or Fehling's) quantitative solution to a range of food samples.
- 2. Place in a very hot water bath.
- 3. If the colour remains blue, then reducing sugar is not present.
- 4. If the colour turns green, yellow, orange or red, then increasing concentrations of reducing sugar are present.